Блок питания мп3 3 характеристики. Источник питания из телевизионного модуля

Телевизоры серии УСЦТ постепенно сдают позиции, и часто, вполне исправныйтелевизор, но с отработавшим кинескопом оказывается выброшен. Нет смысла убеждать читателей в том, сколько замечательных устройств можно сделать из деталей этого "бедняги".

Один из интереснейших узлов телевизоров данного типа - импульсный источник питания, достаточно легкий и компактный, будучи в исправном состоянии, дающий хорошие выходные характеристки. В данной статье рассказано как на базе МП-3-3 сделать источник питания.

Если вы занимались ремонтом УСЦТ, то должны знать, что если МП-3-3 просто включить в сеть без нагрузки он не работает. Срабатывает система защиты, которая следит не только за перегрузкой, но и за "недогрузкой". Поэтому, чтобы МП-3-3 можно было использовать как лабораторный, то есть, с самыми разными нагрузками, его нужно нагрузить.

В Л.1 предложено каждый из выходных источников МП-3-3 нагрузить стартовыми нагрузками, но, как показывает практика; этого делать не обязательно. Дело в том, что система защиты не следит за токами во всех вторичных обмотках импульсного трансформатора.

Ей важно чтобы блок был подгружен по вторичной цепи. А то, по какой именно вторичной цепи, - значения не имеет. К тому же, для вывода источника на режим стабилизации требуется нагрузить его не менее 20W, а при сопротивлениях резисторов, указанных в Л.1 в сумме получается не более 3-4 W. Для вывода источника на рабочий режим этого недостаточно.

Генератор импульсов исправного источника МП-3-3 при нагрузочной мощности менее 15-20W выключается. Поэтому, берем самый ненужный выход 135V и нагружаем его мощностью около 20-25Л/, просто, подключив на его выход осветительную лампу накаливания от холодильника. Или проволочный резистор типа "ПЭВ" на 600-800 Ом мощностью 20-30W.

При такой нагрузке источник переходит в режим стабилизации. Теперь можно использовать его выходы напряжением 28V (до 1 А), МУ (до 2 А), 15V (до 2 А). Как их использовать - зависит от того, какие напряжения планируется получать от источника.

Рис. 1. Фрагмент схемы источника питания МП-3-3.

Можно заменить все вторичные цепи другими, заменить транзисторный стабилизатор 12V регулируемым интегральным, использовать на всех выходах регулируемые стабилизаторы и т.д. Следует заметить, что для выхода 15V используется отдельная обмотка трансформатора, это позволит сделать один из выходов гальванически развязанным от других.

И еще, пожалуй самое неожиданное применение МП-3-3, - после доработки выходных цепей от него можно питать даже небольшой ламповый УМЗЧ, используя выходное напряжение 135V для питания его анодных цепей.

Каравкин В. Рк2005, 1.

Литература:

  1. Кашкаров А. Блок питания из телевизора. ж. Радиомир 9, 2004.
  2. С.А. Ельяшкевич. Цветные телевизоры ЗУСЦТ.

Обзор одного из множества китайских mp3 модулей. Этот умеет переключать папки и проигрывать flac, bluetooth и фм-радио тоже имеется.

Марка модуля ct02ea. Воспроизводит mp3 и flac с флешек, карт памяти и внешних жестких дисков. Есть линейный вход, выход, встроенный усилитель на динамики. Имеется блютуз, воспроизводит аудио сигнал с телефона, кнопками с пульта/лицевой панели можно переключать треки на телефоне, есть громкая связь, при входящем звонке проговаривает номер телефона на англ. языке. Радио есть с неплохой чувствительностью.

На лицевой панели размещены: светодиодный дисплей, который показывает номер трека частоту радиостанции и дополнительные пиктограммы режима работы; разъем USB для подключения носителя; разъем под карту памяти; аудио выход (jack 3.5); аудио вход (mini usb), ползунковый выключатель и кнопки управления

Вид сверху: виден микрофон на проводах. Девайс может работать по блютузу в качестве громкой связи. Два разъема на динамики и разъем питания. Внимание, этот модуль питается от 5в!


Обратная сторона

Плата со снятой передней панелью. На плате надпись: JLZ02EBT Поиск гуглом результатов не дал.

Внешний вид дисплея. Сам дисплей светодиодный, применяется динамическая индикация. Сегменты подключены встречно-параллельно, благодаря такому включению индикатор соединен с контроллером всего 7 выводами. Справа ИК приемник для пульта.

Элементы на плате. Все основано на контроллере AC1624. Не помню сейчас название фирмы производителя. Подобных контроллеров у них вагон и маленькая тележка. Такое чувство, что производитель выпускает новое наименование чуть ли не каждый день. В этом уже и фм радио внутрь интегрировано. Две микросхемы 8002b - усилители звука, по микрухе на канал. 25d80 - микросхема флешь памяти с прошивкой устройства. Маленькая синяя платка - блютуз модуль. Нераспаянные разъемы: линейные входы/выходы и питание, на обратной стороне платы все подписано, разведены напрямую к разъемам на лицевой панели.

Тестовый стенд: питание от лабораторного блока, динамики от какого-то моноблока, внешний жесткий диск. На индикаторе символы внеземной цивилизации - особенности динамической индикации, в каждый момент времени светится только несколько сегментов, за счет инерции зрения мы видим полную картинку.

Потребление тока. Средняя громкость, воспроизводит mp3 с жесткого диска. В среднем около 0.7А

Воспроизведение с флешки, на нее записал какой-то альбом в flac формате.

Потребление тока, при воспроизведении с флешки. В среднем 0.4А

Небольшое видео с демонстрацией основных функций

Переключение режимов работы озвучивается по английски. При подаче питания модуль по умолчанию стоит в режиме блютуза. Если выключить/включить кнопкой пульта - будет в том же режиме, что и до выключения. Запоминает уровень громкости и проигрываемый файл.
Очень порадовала работа с внешним диском. Я подключал хард объемом 500гиг, отформатированном в extFAT. Накидал туда несколько папок с музыкой. Папки переключаются только с пульта долгим нажатием на кнопки трек_вперед/трек_назад.
Если подключен блютуз, при переключении режима соединение разрывается. Может работать с голосовыми вызовами - чувствительность микрофона не блещет, но в целом неплохо.
Качество воспроизведения в тестовых условиях было трудно оценить, в целом неплохо. Явных искажений я не услышал. Для полноты картины нужно потестить девайс с нормальной акустикой.
Есть режим повтора и случайного воспроизведения.
Радио. Оно как бы есть, чувствительность неплохая. Но настройка неудобная. Похоже модуль сканирует эфир и записывает частоты с вещанием в память. В видео можно посмотреть, как оно настраивается. Приемник меня интересовал в последнюю очередь (мне он вообще не требуется), так что особо не разбирался.
Питается модуль от 5В, я бы рекомендовал источник питания с током не менее 1.5А, особенно если будет использоваться usb хард.

Планирую купить +48 Добавить в избранное Обзор понравился +34 +62

Глава 3. Схемы импульсных блоков питания.

В этой статье рассмотрим схему, управление ключом в которой сделано по другому принципу. Данная схема с незначительными изменениями применена во многих телевизорах, таких как Akai CT-1405E, Elekta CTR-2066DS и других.

На транзисторе Q1 собрано устройство сравнения, схема его ничем не отличается от других, рассмотренных раньше. Только здесь применен транзистор n-p-n, в результате поменялась полярность включения. Питается схема сравнения от отдельной обмотки от выпрямителя D5 с фильтром C2. Начальное смещение на ключ Q4 подается через резистор R7, обычно представляющий собой несколько последовательно включенных резисторов, что объясняется, по-видимому, лучшей теплоотдачей, исключением пробоя между выводами (все-таки падение напряжения на нем 300 В) или технологичностью сборки. Я сам путем не знаю, для чего это делается, но в импортной аппаратуре такое видишь сплошь и рядом.

Цепь обратной связи подключена здесь не таким способом, какие мы разбирали раньше. Один вывод обмотки обратной связи подключается как обычно, к базе ключа, а другой – на диодный распределитель D3,D4.

Что получается в результате? Транзисторы Q2 и Q3 представляющие собой составной транзистор, являются регулируемым сопротивлением. Это сопротивление (между плюсом конденсатора С3 и эмиттером Q3) зависит от приходящего с Q1 сигнала ошибки. Так как транзистор Q2 проводимости p-n-p, то с увеличением приходящего на его базу напряжения его ток уменьшается, транзистор Q3 призакрывается, то есть сопротивление составного транзистора увеличивается. Это свойство схемы и используется.

Рассмотрим момент запуска. Конденсатор C3 разряжен. Цепь обратной связи подключена плюсом к базе, минусом через D4 и R9 с общим проводом. Происходит процесс линейного нарастаниятока коллектора, который заканчивается насыщением ключа и его закрыванием. При этом полярность напряжения на обмотке обратной связи меняется на обратную и этим напряжением через диод D3 заряжается конденсатор C3. Когда энергия трансформатора израсходуется, конденсатор С3 окажется подключенным к переходу база-эмиттер ключа через сопротивление составного транзистора минусом на базу и закроет ключ.

Время разряда С3 и величина закрывающего потенциала зависят от величины сопротивления составного транзистора. В момент запуска блока питания это сопротивление большое и разряд конденсатора С3 не задерживает очередной цикл, однако в установившемся режиме задержка очередного цикла получается достаточна для регулировки средней мощности, отдаваемой в нагрузку. Таким образом мы видим, что рассматриваемая схема не совсем ШИМ. Если в предыдущих схемах регулированию подвергалось время открытого состояния ключа, то в данной схеме регулируется время закрытого состояния ключа.

Рис 2

На рисунке показан путь разряда конденсатора С3. В момент времени t0 начинается нарастание тока коллектора ключа и продолжается до момента t1. На этом отрезке времени напряжение Uбэ ключа нарастает. На заряде С3 это никак не отражается, так как к обмотке обратной связи С3 подключен через закрытый в этот момент диод D3. Как только рост коллекторного тока ключа заканчивается, полярность напряжения на обмотке обратной связи меняется на обратную, диод D3 открывается и начинается заряд С3. Одновременно через сопротивление составного транзистора Rсост это напряжение прикладывается к переходу база-эмиттер ключа, надежно запирая его. Заряд С3 продолжается до момента времени t2, то есть пока накопленная энергия трансформатора не перейдет в нагрузку. В этот момент заряженный С3 через Rсост и открывшийся диод D4 окажется подключенным к переходу база-эмиттер ключа. На приведенном рисунке видно, как делится напряжение заряженного конденсатора С3 между сопротивлением составного транзистора Rсост (Uсост) и сопротивлением участка база-эмиттер ключа Rкл (Uбэ), которое определяется суммой сопротивлений R9 и сопротивления открытого диода D4. Сопротивление резисторов R6, R9 и R10 мало и их можно не принимать во внимание. При большом сопротивлении Rсост разряд С3 происходит медленнее и порог открывания ключа будет достигнут позже, чем при малом Rсост. В момент времени t3 напряжение С3 уменьшится до такой величины, что запирающее напряжение на базе ключа исчезнет и цикл повторится. Так сопротивление составного транзистора участвует в процессе.

Схемы отечественных импульсных блоков питания.

Подавляющее большинство схем отечественных ИБП построены по одинаковой схеме, по одному принципу и различаются лишь схемой запуска, да величинами выходных напряжений вторичных выпрямителей. И еще одна особенность – отечественные ИБП не предназначены для работы в дежурном режиме (то есть в режиме практически холостого хода). Во всех ИБП имеются защиты от перегрузки и короткого замыкания в нагрузке, от недонапряжения в сети ниже 160 В, холостого хода. В некоторых моделях с дистанционным управлением выключение ИБП производится с помощью искусственно создаваемой перегрузки, в этом случае срабатывает защита по перегрузке и срывается генерация.

Так как еще имеется очень много отечественных телевизоров с такими ИБП, я расскажу о них более подробно, несмотря на то, что буду кое в чем повторяться. То, о чем я буду рассказывать, относится ко всем моделям ИБП, построенным на дискретных элементах. Отечественные ИБП, построенные с применением микросхемы К1033ЕУ1 (аналог TDA4601) рассмотрим в следующей главе, в которой опишу работу ИБП на микросхемах. Более новые ИБП, в которых применены разработки зарубежных производителей, я здесь рассматривать не буду.

Принципиальная схема модуля питания МП-3-3

Рассмотрим принципиальную схему модуля питания МП-3-3. В состав модуля входит низковольтный выпрямитель (диоды VD4-VD7), формирователь импульсов запуска (VT3), импульсный генератор (VT4), устройство стабилизации (VT1), устройство защиты (VT2), импульсный трансформатор Т1, выпрямители на диодах VD12-VD15, стабилизатор напряжения 12 B (VT5-VT7).

Рис 3

Импульсный генератор собран по схеме автогенератора с коллекторно-базовыми связями на транзисторе VT4. При включении телевизора постоянное напряжение с выхода фильтра сетевого выпрямителя (конденсаторов С16, С19, С20) через обмотку 19-1 трансформатора Т1 поступает на коллектор транзистора VT4. Одновременно сетевое напряжение с диода VD7 через резисторы R8 и R 11 заряжает конденсатор С7, а также поступает на эмиттер транзистора VT2, где оно используется в устройстве защиты модуля питания от пониженного напряжения сети. Когда напряжение на конденсаторе С7, приложенное между эмиттером и базой 1 однопереходного транзистора VT3, достигает значения 3 В, транзистор VT3 открывается. Конденсатор С7 начинает разряжаться по цепи: переход эмиттер-база транзистора VT3, эмиттерный переход транзистора VT4, параллельно соединенные резисторы R14 и R16, .конденсатор С7.

Ток разрядки конденсатора С7 открывает транзистор VT4 на время 10...15 мкс, достаточное, чтобы ток в его коллекторной цепи возрос до 3...4 А. Протекание коллекторного тока транзистора VT4 через обмотку намагничивания 19-1 сопровождается накоплением энергии в магнитном поле сердечника. После окончания разрядки конденсатора С7 транзистор VT4 закрывается. Прекращение коллекторного тока вызывает в катушках трансформатора Т1 появление ЭДС самоиндукции, которая создает на выводах 6, 8, 10, 5 и 7 трансформатора Т1 положительное напряжение. При этом через диоды однополупериодных выпрямителей во вторичных цепях VD12-VD15 протекает ток.

При положительном напряжении на выводах 5, 7 трансформатора Т1 конденсаторы С14 и С6 заряжаются соответственно в цепях анода и управляющего электрода тиристора VS1 и С2 в эмиттерно-базовой цепи транзистора VT1.

Конденсатор С6 заряжается по цепи: вывод 5 трансформатора Т1, диод VD11, резистор R 19, конденсатор С6, диод VD9, вывод 3 трансформатора. Конденсатор С14 заряжается по цепи: вывод 5 трансформатора Т1, диод VD8, конденсатор С14, вывод 3 трансформатора. Конденсатор С2 заряжается по цепи: вывод 7 трансформатора Т1, резистор R13, диод VD2, конденсатор С2, вывод 13 трансформатора.

Аналогично осуществляются последующие включения и выключения транзистора VT4 автогенератора. Причем несколько таких вынужденных колебаний оказывается достаточным, чтобы зарядить конденсаторы во вторичных цепях. С окончанием зарядки этих конденсаторов между обмотками автогенератора, подсоединенными к коллектору (выводы 1, 19) и к базе (выводы 3, 5) транзистора VT4, начинает действовать положительная обратная связь. При этом автогенератор переходит в режим автоколебаний, при котором транзистор VT4 будет автоматически открываться и закрываться с определенной частотой.

В открытом состоянии транзистора VT4 его коллекторный ток протекает от плюса конденсатора С16 через обмотку трансформатора Т1 с выводами 19, 1, коллекторный и эмиттерный переходы транзистора VT4, параллельно включенные резисторы R14, R16 к минусу конденсатора С16. Из-за наличия в цепи индуктивности нарастание коллекторного тока происходит по пилообразному закону.

Для исключения возможности выхода из строя транзистора VT4 от перегрузки сопротивление резисторов R14 и R16 подобрано таким образом, что, когда ток коллектора достигает значения 3,5 А, на них создается падение напряжения, достаточное для открывания тиристора VS1. При открывании тиристора конденсатор С14 разряжается через эмиттерный переход транзистора VT4, соединенные параллельно резисторы R14 и R16, открытый тиристор VS1. Ток разрядки конденсатора С14 вычитается из тока базы транзистора VT4, и транзистор преждевременно закрывается.

Дальнейшие процессы в работе автогенератора определяются состоянием тиристора VS1. Более раннее или более позднее его открывание позволяет регулировать время нарастания пилообразного тока и тем самым - количество энергии, запасаемой в сердечнике трансформатора.

Модуль питания может работать в режиме стабилизации и в режиме короткого замыкания.

Режим стабилизации определяется работой УПТ на транзисторе VT1 и тиристоре VS1. При сетевом напряжении 220 В, когда выходные напряжения вторичных источников питания достигнут номинальных значений, напряжение на обмотке трансформатора Т1 (выводы 7, 13) возрастет до значения, при котором постоянное напряжение на базе транзистора VT1, куда оно поступает через делитель R1-R3, становится более отрицательным, чем на эмиттере, куда оно передается полностью. Транзистор VT1 открывается по цепи: вывод 7 трансформатора, R13, VD2, VD1, эмиттерный и коллекторный переходы транзистора VT1, R6, управляющий электрод тиристора VS1, R14-R16, вывод 13 трансформатора. Ток транзистора, суммируясь с начальным током управляющего электрода тиристора VS1, открывает его в тот момент, когда выходное напряжение модуля достигает номинальных значений, прекращая нарастание коллекторного тока.

Изменяя напряжение на базе транзистора VT1 подстроечным резистором R2, можно регулировать напряжение на резисторе R10 и, следовательно, изменять момент открывания тиристора VS1 и продолжительность открытого состояния транзистора VT3, т. е. устанавливать выходные напряжения вторичных источников питания.

При увеличении напряжения сети (либо уменьшении тока нагрузки) возрастает напряжение на выводах 7, 13 трансформатора Т1. При этом увеличивается отрицательное напряжение базы по отношению к эмиттеру транзистора VT1, вызывая возрастание коллекторного тока и падения напряжения на резисторе R10. Это приводит к более раннему открыванию тиристора VS1 и закрыванию транзистора VT4, мощность, отдаваемая во вторичные цепи, уменьшается.

При понижении напряжения сети (либо увеличении тока нагрузки) соответственно меньше становится напряжение на обмотке трансформатора Tl и потенциал базы транзистора VT1 по отношению к эмиттеру. Теперь из-за уменьшения напряжения, создаваемого коллекторным током транзистора VT1 на резисторе R10, тиристор VS1 открывается в более позднее время и количество энергии, передаваемой во вторичные цепи, возрастает.

Существенную роль в защите транзистора VT4 играет каскад на транзисторе VT2, При уменьшении напряжения сети ниже 150 В напряжение на обмотке Т1 с выводами 7, 13 оказывается недостаточным для открывания транзистора VT1. При этом устройство стабилизации и защиты не работает и создается возможность перегрева транзистора VT4 из-за перегрузки. Чтобы предотвратить выход из строя транзистора VT4, необходимо прекратить работу автогенератора. Предназначенный для этой цели транзистор VT2 включен таким образом, что на его базу подается постоянное напряжение с делителя R18, R4, а на эмиттер - пульсирующее напряжение частотой 50 Гц, амплитуда которого стабилизируется стабилитроном VD3. При уменьшении напряжения сети уменьшается напряжение на базе транзистора VT2. Так как напряжение на эмиттере стабилизировано, уменьшение напряжения на базе приводит к открыванию транзистора. Через открытый транзистор VT2 трапецеидальные импульсы с диода VD7 попадают на управляющий электрод тиристора, открывая его на время, определяемое длительностью трапецеидального импульса. Это прекращает работу автогенератора.

Режим короткого замыкания возникает при наличии короткого замыкания в нагрузке вторичных источников питания. Запуск модуля в этом случае производится запускающими импульсами от устройства запуска (транзистор VT3), а выключение - с помощью тиристора VS1 по максимальному току коллектора транзистора VT4. После окончания запускающего импульса устройство не возбуждается, поскольку вся энергия расходуется короткозамкнутой цепью.

После снятия короткого замыкания модуль входит в режим стабилизации.

Выпрямители импульсных напряжений, подсоединенные ко вторичной обмотке трансформатора Т1, собраны по однополупериодной схеме.

Выпрямитель на диоде VD12 создает напряжение 130 В для питания модуля строчной развертки. Пульсации этого напряжения сглаживаются конденсатором С27. Резистор R22 устраняет возможность значительного повышения напряжения на выходе выпрямителя при отключении нагрузки.

На диоде VD13 собран выпрямитель напряжения 28 В, предназначенный для питания модуля кадровой развертки. Фильтр на его выходе образован конденсатором С28 и дросселем L2.

Выпрямитель напряжения 15 В для питания УЗЧ собран на диоде VD15 и конденсаторе С30.

Напряжение 12 В, используемое в блоке управления, модуле цветности, модуле радиоканала и модуле кадровой развертки, создается выпрямителем на диоде VD14 и конденсаторе С29. На выходе этого выпрямителя включен компенсационный стабилизатор напряжения. В его состав входят регулирующий транзистор VT5, усилитель тока VT6 и управляющий транзистор VT7. Напряжение с выхода стабилизатора через делитель R26, R27 поступает на базу транзистора VT7. Переменный резистор R27 предназначен для установки выходного напряжения. В эмиттерной цепи транзистора VT7 напряжение на выходе стабилизатора сравнивается с опорным напряжением на стабилитроне VD16. Напряжение с коллектора VT7 через усилитель на транзисторе VT6 поступает на базу транзистора VT5, включенного последовательно в цепь выпрямленного тока. Это приводит к изменению его внутреннего сопротивления, которое в зависимости от того, увеличилось или уменьшилось выходное напряжение, либо возрастает, либо понижается. Конденсатор С31 предохраняет стабилизатор от возбуждения. Через резистор R23 поступает напряжение на базу транзистора VT7, необходимое для его открывания при включении и восстановлении после короткого замыкания. Дроссель L3 и конденсатор С32 - дополнительный фильтр на выходе стабилизатора.

Материал данной статьи предназначен не только для владельцев уже раритетных телевизоров, желающих восстановить их работоспособность, но и для тех, кто хочет разобраться со схемотехникой, устройством и принципом работы импульсных блоков питания. Если усвоить материал данной статьи, то без труда можно будет разобраться с любой схемой и принципом работы импульсных блоков питания для бытовой техники , будь то телевизор, ноутбук или офисная техника. И так приступим...

В телевизорах советского производства, третьего поколения ЗУСЦТ применялись импульсные блоки питания - МП (модуль питания).

Импульсные блоки питания в зависимости от модели телевизора, где они использовались, разделялись на три модификации - МП-1, МП-2 и МП-3-3. Модули питания собраны по одинаковой электрической схеме и различаются только типом импульсного трансформатора и номиналом напряжения конденсатора С27 на выходе фильтра выпрямителя (см. принципиальную схему).

Функциональная схема и принцип работы импульсного блока питания телевизора ЗУСЦТ

Рис. 1. Функциональная схема импульсного блока питания телевизора ЗУСЦТ:

1 - сетевой выпрямитель; 2 - формирователь импульсов запуска; 3 - транзистор импульсного генератора, 4 - каскад управления; 5 - устройство стабилизации; 6 - устройство защиты; 7 - импульсный трансформатор блока питания телевизоров 3усцт; 8 - выпрямитель; 9 - нагрузка

Пусть в начальный момент времени в устройстве 2 будет сформирован импульс, который откроет транзистор импульсного генератора 3. При этом через обмотку импульсного трансформатора с выводами 19, 1 начнет протекать линейно нарастающий пилообразный ток. Одновременно в магнитном поле сердечника трансформатора будет накапливаться энергия, значение которой определяется временем открытого состояния транзистора импульсного генератора. Вторичная обмотка (выводы 6, 12) импульсного трансформатора намотана и подключена таким образом, что в период накопления магнитной энергии к аноду диода VD приложен отрицательный потенциал и он закрыт. Спустя некоторое время каскад управления 4 закрывает транзистор импульсного генератора. Так как ток в обмотке трансформатора 7 из-за накопленной магнитной энергии не может мгновенно измениться, возникает ЭДС самоиндукции обратного знака. Диод VD открывается, и ток вторичной обмотки (выводы 6, 12) резко возрастает. Таким образом, если в начальный период времени магнитное поле было связано с током, который протекал через обмотку 1, 19, то теперь оно создается током обмотки 6, 12. Когда вся энергия, накопленная за время замкнутого состояния ключа 3, перейдет в нагрузку, то во вторичной обмотке достигнет нулевого значения.

Из приведенного примера можно сделать вывод, что, регулируя длительность открытого состояния транзистора в импульсном генераторе, можно управлять количеством энергии, которое поступает в нагрузку. Такая регулировка осуществляется с помощью каскада управления 4 по сигналу обратной связи - напряжению на выводах обмотки 7, 13 импульсного трансформатора. Сигнал обратной связи на выводах этой обмотки пропорционален напряжению на нагрузке 9.

Если напряжение на нагрузке по каким-либо причинам уменьшится, то уменьшится и напряжение, которое поступает в устройство стабилизации 5. В свою очередь, устройство стабилизации через каскад управления начнет закрывать транзистор импульсного генератора позже. Это увеличит время, в течение которого через обмотку 1, 19 будет течь ток, и соответственно возрастет количество энергии, передаваемой в нагрузку.

Момент очередного открывания транзистора 3 определяется устройством стабилизации, где анализируется сигнал, поступающий с обмотки 13, 7, что позволяет автоматически поддерживать среднее значение выходного постоянного напряжения.

Применение импульсного трансформатора дает возможность получить различные по амплитуде напряжения в обмотках и устраняет гальваническую связь между цепями вторичных выпрямленных напряжений и питающей электрической сетью. Каскад управления 4 определяет размах импульсов, создаваемых генератором, и при необходимости отключает его. Отключение генератора осуществляется при уменьшении напряжения сети ниже 150 В и понижении потребляемой мощности до 20 Вт, когда каскад стабилизации перестает функционировать. При неработающем каскаде стабилизации, импульсный генератор оказывается неуправляемым, что может привести к возникновению в нем больших импульсов тока и к выходу из строя транзистора импульсного генератора.

Принципиальная схема импульсного блока питания телевизора ЗУСЦТ

Рассмотрим принципиальную схему модуля питания МП-3-3 и принцип ее работы.

Рис. 2 Принципиальная схема импульсного блока питания телевизора ЗУСЦТ, модуль МП-3-3

В ее состав входит низковольтный выпрямитель (диоды VD4 - VD7), формирователь импульсов запуска (VT3), импульсный генератор (VT4), устройство стабилизации (VT1), устройство защиты (VT2), импульсный трансформатор Т1 блока питания 3усцт и выпрямители на диодах VD12 - VD15 со стабилизатором напряжения (VT5 - VT7).

Импульсный генератор собран по схеме блокинг-генератора с коллекторно-базовыми связями на транзисторе VT4. При включении телевизора постоянное напряжение с выхода фильтра низковольтного выпрямителя (конденсаторов С16, С19 и С20) через обмотку 19, 1 трансформатора Т1 поступает на коллектор транзистора VT4. Одновременно сетевое напряжение с диода VD7 через конденсаторы С11, С10 и резистор R11 заряжает конденсатор С7, а также поступает на базу транзистора VT2, где оно используется в устройстве защиты модуля питания от пониженного напряжения сети. Когда напряжение на конденсаторе С7, приложенное между эмиттером и базой 1 однопереходного транзистора VT3, достигнет значения 3 В, транзистор VT3 откроется. Происходит разрядка конденсатора С7 по цепи: переход эмиттер-база 1 транзистора VT3, эмиттерный переход транзистора VT4, параллельно соединенные, резисторы R14 и R16, конденсатор С7.

Ток разрядки конденсатора С7 открывает транзистор VT4 на время 10 - 15 мкс, достаточное, чтобы ток в его коллекторной цепи возрос до 3...4 А. Протекание коллекторного тока транзистора VT4 через обмотку намагничивания 19, 1 сопровождается накоплением энергии в магнитном поле сердечника. После окончания разрядки конденсатора С7 транзистор VT4 закрывается. Прекращение коллекторного тока вызывает в катушках трансформатора Т1 появление ЭДС самоиндукции, которая создает на выводах 6, 8, 10, 5 и 7 трансформатора Т1 положительные напряжения. При этом через диоды одно-полупериодных выпрямителей во вторичных цепях (VD12 - VD15) протекает ток.

При положительном напряжении на выводах 5, 7 трансформатора Т1 происходит зарядка конденсаторов С14 и С6 соответственно в цепях анода и управляющего электрода тиристора VS1 и С2 в эмиттерно-базовой цепи транзистора VT1.

Конденсатор С6 заряжается по цепи: вывод 5 трансформатора Т1, диод VD11, резистор R19, конденсатор С6, диод VD9, вывод 3 трансформатора. Конденсатор С14 заряжается по цепи: вывод 5 трансформатора Т1, диод VD8, конденсатор С14, вывод 3 трансформатора. Конденсатор С2 заряжается по цепи: вывод 7 трансформатора Т1, резистор R13, диод VD2, конденсатор С2, вывод 13 трансформатора.

Аналогично осуществляются последующие включения и выключения транзистора VT4 блокинг-генератора. Причем нескольких таких вынужденных колебаний оказывается достаточным, чтобы зарядить конденсаторы во вторичных цепях. С окончанием зарядки этих конденсаторов между обмотками блокинг-генератора, подсоединенными к коллектору (выводы 1, 19) и к базе (выводы 3, 5) транзистора VT4, начинает действовать положительная обратная связь. При этом блокинг-генератор переходит в режим автоколебаний, при котором транзистор VT4 будет автоматически открываться и закрываться с определенной частотой.

В период открытого состояния транзистора VT4 его коллекторный ток протекает от плюса электролитического конденсатора С16 через обмотку трансформатора Т1 с выводами 19, 1, коллекторный и эмиттерный переходы транзистора VT4, параллельно включенные резисторы R14, R16 к минусу конденсатора С16. Из-за наличия в цепи индуктивности нарастание коллекторного тока происходит по пилообразному закону.

Для исключения возможности выхода из строя транзистора VT4 от перегрузки сопротивление резисторов R14 и R16 подобрано таким образом, что, когда ток коллектора достигает значения 3,5 А, на них создается падение напряжения, достаточное для открывания тиристора VS1. При открывании тиристора конденсатор С14 разряжается через эмиттерный переход транзистора VT4, соединенные параллельно резисторы R14 и R16, открытый тиристор VS1. Ток разрядки конденсатора С14 вычитается из тока базы транзистора VT4, что приводит к его преждевременному закрыванию.

Дальнейшие процессы в работе блокинг-генератора определяются состоянием тиристора VS1, более раннее или более позднее открывание которого позволяет регулировать время нарастания пилообразного тока и тем самым количество энергии, запасаемой в сердечнике трансформатора.

Модуль питания может работать в режиме стабилизации и короткого замыкания.

Режим стабилизации определяется работой УПТ (усилителя постоянного тока) собранного на транзисторе VT1 и тиристоре VS1.

При напряжении сети 220 Вольт, когда выходные напряжения вторичных источников питания достигнут номинальных значений, напряжение на обмотке трансформатора Т1 (выводы 7, 13) возрастает до значения, при котором постоянное напряжение на базе транзистора VT1, куда оно поступает через делитель Rl - R3, становится более отрицательным, чем на эмиттере, куда оно передается полностью. Транзистор VT1 открывается по цепи: вывод 7 трансформатора, R13, VD2, VD1, эмиттерный и коллекторный переходы транзистора VT1, R6, управляющий электрод тиристора VS1, R14, R16, вывод 13 трансформатора. Этот ток, суммируясь с начальным током управляющего электрода тиристора VS1, открывает его в тот момент, когда выходное напряжение модуля достигает номинальных значений, прекращая нарастание коллекторного тока.

Изменяя напряжение на базе транзистора VT1 подстроечным резистором R2, можно регулировать напряжение на резисторе R10 и, следовательно, изменять момент открывания тиристора VS1 и продолжительность открытого состояния транзистора VT4, тем самым устанавливать выходные напряжения блока питания.

При уменьшении нагрузки (либо увеличении напряжения сети) возрастает напряжение на выводах 7, 13 трансформатора Т1. При этом увеличивается отрицательное напряжение на базе по отношению к эмиттеру транзистора VT1, вызывая возрастание коллекторного тока и падение напряжения на резисторе R10. Это приводит к более раннему открыванию тиристора VS1 и закрыванию транзистора VT4. Тем самым уменьшается мощность, отдаваемая в нагрузку.

При понижении напряжения сети соответственно меньше становится напряжение на обмотке трансформатора Т1 и потенциал базы транзистора VT1 по отношению к эмиттеру. Теперь из-за уменьшения напряжения, создаваемого коллекторным током транзистора VT1 на резисторе R10, тиристор VS1 открывается в более позднее время и количество энергии, передаваемой во вторичные цепи, возрастает. Важную роль в защите транзистора VT4 играет каскад на транзисторе VT2. При уменьшении напряжения сети ниже 150 В напряжение на обмотке трансформатора Т1 с выводами 7, 13 оказывается недостаточным для открывания транзистора VT1. При этом устройство стабилизации и защиты не работает, транзистор VT4 становится неуправляемым и создается возможность выхода его из строя из-за превышения предельно допустимых значений напряжения, температуры, тока транзистора. Чтобы предотвратить выход из строя транзистора VT4, необходимо блокировать работу блокинг-генератора. Предназначенный для этой цели транзистор VT2 включен таким образом, что на его базу подается постоянное напряжение с делителя R18, R4, а на эмиттер пульсирующее напряжение частотой 50 Гц, амплитуда которого стабилизируется стабилитроном VD3. При уменьшении напряжения сети уменьшается напряжение на базе транзистора VT2. Так как напряжение на эмиттере стабилизировано, уменьшение напряжения на базе приводит к открыванию транзистора. Через открытый транзистор VT2 импульсы трапецеидальной формы с диода VD7 поступают на управляющий электрод тиристора, открывая его на время, определяемое длительностью трапецеидального импульса. Это приводит к прекращению работы блокинг-генератора.

Режим короткого замыкания возникает при наличии короткого замыкания в нагрузке вторичных источников питания. Запуск блока питания в этом случае производится запускающими импульсами от устройства запуска собранного на транзисторе VT3, а выключение - с помощью тиристора VS1 по максимальному току коллектора транзистора VT4. После окончания запускающего импульса устройство не возбуждается, поскольку вся энергия расходуется в короткозамкнутой цепи.

После снятия короткого замыкания модуль входит в режим стабилизации.

Выпрямители импульсных напряжений, подсоединенные ко вторичной обмотке трансформатора Т1, собраны по однополупериодной схеме.

Выпрямитель на диоде VD12 создает напряжение 130 В для питания схемы строчной развертки. Сглаживание пульсаций этого напряжения производится электролитическим конденсатором С27. Резистор R22 устраняет возможность значительного повышения напряжения на выходе выпрямителя при отключении нагрузки.

На диоде VD13 собран выпрямитель напряжения 28 В, предназначенный для питания кадровой развертки телевизора. Фильтрация напряжения обеспечивается конденсатором С28 и дросселем L2.

Выпрямитель напряжения 15 В для питания усилителя звуковой частоты собран на диоде VD15 и конденсаторе СЗО.

Напряжение 12 В, используемое в модуле цветности (МЦ), модуле радиоканала (МРК) и модуле кадровой развертки (МК), создается выпрямителем на диоде VD14 и конденсаторе С29. На выходе этого выпрямителя включен компенсационный стабилизатор напряжения собранного на транзисторах. В его состав входит регулирующий транзистор VT5, усилитель тока VT6 и управляющий транзистор VT7. Напряжение с выхода стабилизатора через делитель R26, R27 поступает на базу транзистора VT7. Переменный резистор R27 предназначен для установки выходного напряжения. В эмиттерной цепи транзистора VT7 напряжение на выходе стабилизатора сравнивается с опорным напряжением на стабилитроне VD16. Напряжение с коллектора VT7 через усилитель на транзисторе VT6 поступает на базу транзистора VT5, включенного последовательно в цепь выпрямленного тока. Это приводит к изменению его внутреннего сопротивления, которое в зависимости от того, увеличилось или уменьшилось выходное напряжение, либо возрастает, либо понижается. Конденсатор С31 предохраняет стабилизатор от возбуждения. Через резистор R23 поступает напряжение на базу транзистора VT7, необходимое для его открывания при включении и восстановления после короткого замыкания. Дроссель L3 и конденсатор С32 - дополнительный фильтр на выходе стабилизатора.

Конденсаторы С22 - С26, шунтируют выпрямительные диоды для уменьшения помех, излучаемых импульсными выпрямителями в электрическую сеть.

Сетевой фильтр блока питания ЗУСЦТ

Плата фильтра питания ПФП подсоединена к электрической сети через соединитель Х17 (А12), выключатель S1 в блоке управления телевизором и сетевые предохранители FU1 и FU2.

В качестве сетевых предохранителей используются плавкие предохранители типа ВПТ-19, характеристики которых позволяют обеспечить значительно более надежную защиту телевизионных приемников при возникновении неисправностей, чем предохранители типа ПМ.

Назначение заградительного фильтра - .

На плате фильтра питания находятся элементы заградительного фильтра (C1, С2, СЗ, дроссель L1) (см. принципиальную схему).

Резистор R3 предназначен для ограничения тока выпрямительных диодов при включении телевизора. Позистор R1 и резистор R2 - элементы устройства размагничивания маски кинескопа.

Нередко требуется «запитать» 12 вольтами радиолюбительскую конструкцию в бытовых условиях. На помощь приходят импульсные блоки питания от старых телевизоров третьего поколения (см. рис. 3.14) моделей «Славутич-Ц202», «Радуга-Ц257», «Чайка-Ц280Д» и аналогичных.

Схемотехника у них, как правило, универсальна, выходное напряжение 12 В такой источник питания обеспечит с полезным током до 0,8 А.

Выходное напряжение снимают с контактов:

2 - 135 В (для строчной развертки);

Контакты 1, 3, 6 разъема Х2 (АЗ) - так он обозначен на плате и на электрической схеме - объединены и подключены к «общему проводу». На рис. 3.15 представлена принципиальная схема модуля питания МП-3-3 (аналогичная модулю МП-3-1, используемому в некоторых моделях цветных телевизоров типового ряда ЗУСЦТ-61-1).

Рис. 3.14. Вид телевизионного модуля питания

Рис, 3.15. Электрическая схема модуля МП-3-3

Шнур питания к сети 220 В подключают к разъему XI.

Главное отличие между этими «родственными» блоками - в индикаторах: в более «свежем» МП-3-3 установлен светодиодный индикатор АЛ307БМ, а в более старом исполнении - газоразрядная лампа ИНС-1 - через ограничительный резистор по питанию 135 В. Если эти индикаторы после подачи питания на заведомо исправный МП-3 не горят (что часто бывает без подключенной нагрузки), значит, модуль питания требуется запустить искусственным способом. Для этого часто достаточно подключить между контактами 1 и 2 (по выходу 135 В) эквивалент нагрузки - постоянный резистор типа МЛТ-1 сопротивлением 6,8 кОм ±30%. После такой доработки импульсный генератор «запускается», трансформатор Т1 начинает негромко «петь», и модуль питания готов к работе по всему спектру выходных напряжений. Резистором R27 (обозначение на схеме и на плате) в небольших пределах можно подрегулировать напряжение по выходу 12 В. Устанавливать дополнительные фильтрующие оксидные конденсаторы (по выходу) нет необходимости, форма выходного напряжения на экране осциллографа имеет четкую прямую линию, не отягощенную наводками.

Наиболее вероятная причина отказов данных модулей питания «кроется» в неисправности транзистора блокинг-генератора КТ838 (VT4). На электрической схеме (рис. 3.15) приведены значения контрольных напряжений в различных точках, поэтому отремонтировать такой блок питания не составит труда любому радиолюбителю. А элементы для ремонта можно найти в «закромах», не затрачивая материальных средств на покупку новых радиодеталей, как неминуемо пришлось бы сделать при ремонте более компактных, но часто и более «капризных» импульсных адаптеров к современной радиоаппаратуре. В этом, несомненно, «морально устаревшие» модули питания типа МП-3 (различных модификаций) выигрывают у более современных, поэтому первые еще рано списывать со счетов.

Литература: Кашкаров А. П. Электронные устройства для уюта и комфорта.